Fourth Annual Conference on Carbon Capture & Sequestration

Developing Potential Paths Forward Based on the Knowledge, Science and Experience to Date

Geologic Sequestration

Impact of Flowing Formation Water on Residual CO₂ Saturations in Deep Aquifers

Philip Stauffer

Los Alamos National Laboratory

May 2-5, 2005, Hilton Alexandria Mark Center, Alexandria Virginia

Los Alamos Collaborators

- Rajesh Pawar
- Hari Viswanathan
- George Zyvoloski
- Peter Lichtner

ZERT: a comprehensive DOE project exploring geologic CO₂ sequestration.

Los Alamos' contribution to ZERT integrates, from the pore scale to the site scale:

Field measurements
Laboratory experiments
Numerical modeling

Our simulations:

- Reservoir scale process model
- Incorporate into systems level calculations
- Characterize disposal site viability

Simulations use the Los Alamos Code FEHM

- Multiphase heat and mass transfer in porous and fractured rock
- Finite-volume approach = more accurate mass balances in complicated geometries
- Powerful grid generation capabilities
- Coupled flow, stress, and chemical reactions
- FEHM + GOLDSIM used for systems-level environmental decisions

Constitutive Equations

- Polynomial fits to NIST water-properties data
- Span and Wagner (1996) equation of state for CO₂
- Duan and Sun (2003) model for solubility as a function of P, T, and brine concentration
- Range of multiphase relative permeability curves
- LANL code-development experience permits rapid implementation of innovations

Code Validation

- Simulated injection and transport of supercritical CO₂
- Good match with PFLOTRAN (Peter Lichtner, LANL)
- Similar to TOUGH-2 results

UNCLASSIFIED

APPLICATION: Dissolution of Residual CO₂

Dissolution of residual CO₂ is affected by:

- 1) Rate at which formation water flows past
- 2) Dissolved CO₂ already in the formation water
- 3) Permeability structure of the reservoir
- 4) Diffusion coefficient of CO₂ in water

2-D Numerical Simulations of CO₂ Dissolution

All simulations have:

- Same initial mass of residual CO₂
- Pressure = 20 MPa at the top of the domain (2 km)
- Temperature = 50 C
- Porosity = 0.15
- Dimensions = 321 m x 50 m

Base Case

Initial assumptions for variable parameters

- 0.1285 m/yr formation volume flux
- Linear relative permeability $k_h = 10^{-10} \text{ m}^2$, $k_v = 10^{-16} \text{ m}^2$
- CO_2 porous medium diffusion coefficient = $1.x10^{-10}$ m²/s
- Formation water has no dissolved CO₂

UNCLASSIFIED

Time-Dependent Removal of Residual CO₂

Sensitivity Results

The most important parameters controlling dissolution are:

- 1) Formation volume flux
- 2) Dissolved CO₂ content of the formation water

Sensitivity to Formation Water Volume Flux

 Relationship between CO₂ removal rate and formation volume flux is nearly linear.

Example with Heterogeneous Permeability

• Correlated random field (Turning band method, Andy Tompson): $k_{h \text{ mean}} = 1e-14 \text{ m}^2$

Time = 745 years

Horizontal

Saturation

Volume

fraction

 CO_2

dissolved

 (m^2)

permeability

CO₂ Removal Rate Heterogeneous vs Homogeneous Permeability

 Focused flow in the heterogeneous case removes CO₂ mass more quickly

Conclusions

- Dissolution removes residual CO₂ slowly
 - Dissolution does not impact storage requirements over100-1000 years.
- For storage over 1000-10000+ years,
 - dissolution and transport of residual CO₂ may be important to site performance assessment.

Further Study

- Possible large increases in permeability may result when dissolution removes the residual CO₂ saturation
- Important for study of flow patterns through residual CO₂

